# CMP 338: Fourth Class

HW 3 solution

Integrate circuit manufacture and cost **Boolean Algebra and Truth Tables** "Black Box" circuit design **Performance** metrics Performance and execution time Relative performance The CPU Time equation The TINY instruction set architecture

For next class:

begin HW 4; review 1.6, 1.10; read A.1-2, 2.1-3

#### HW 3 part 1: Base Conversion

Convert the following to the indicated base:  $10110111011110_{2} = 2DDE_{16}$  $4C1F91_{16} = 0100\ 1100\ 0001\ 1111\ 1001\ 0001_{2}$  $100_{10} = 64 + 32 + 4 = 2^6 + 2^5 + 2^2 = 01100100_2$  $10001010_{2} = 2^{7} + 2^{3} + 2^{1} = 128 + 8 + 2 = 138_{10}$  $1F3_{16} = 1.16^2 + 15.16^1 + 3.16^0 = 256 + 240 + 3 = 499_{10}$  $1055_{10} = 1024 + 16 + 8 + 4 + 2 + 1 = 10000011111_{2} = 41F_{16}$ 

## **Chip Fabrication**



#### Intel Core I7 Wafer



## Integrated Circuit Fabriction Costs



- 11.8 inch (300mm) patterned wafer
- ~325 (20.7 x 10.5 mm) dies per wafer
- ~23% of dies are defective (yield = ~0.77) If a wafer costs \$20,000

what is the fabrication cost of a die (chip)?

# HW 3 part 2: Fabrication Cost

A processor fabrication plant gets 400 processor chips to a wafer with a yield of 80%. If the chip fabrication cost is \$90, what is the cost of the wafer?

$$chip_{cost} = \frac{wafer_{cost}}{chipsPerWafer \cdot yield}$$

$$wafer_{cost} = chip_{cost} \cdot chipsPerWafer \cdot yield$$

$$= \$90 \cdot 400 \cdot 0.8 = \$28,800$$

# **Computer Design Big Picture**

- A computer is one big *sequential* circuit **Abstract** into discrete sequential components *Combinational* circuits + memory + clock
- Combinational circuit design
  - 1. Specify semantics
    - Black Box input and output
    - Truth Table (Input determines output)
  - 2. Truth table  $\rightarrow$  *Boolean formula*
  - 3. Minimize boolean formula (Karnaugh Maps)
  - 4. Boolean formula  $\rightarrow$  combinational circuit

#### **Boolean Algebra**

Constants: **0** and **1** (False, True) Operators: <u>not</u> (<sup>-</sup>, ~), <u>and</u> (•, &), <u>or</u> (+, |)

| Α | Ā | Α | Β | A + B | <b>A • B</b> |
|---|---|---|---|-------|--------------|
| 0 | 1 | 0 | 0 | 0     | 0            |
| 1 | 0 | 0 | 1 | 1     | 0            |
|   |   | 1 | 0 | 1     | 0            |
|   |   | 1 | 1 | 1     | 1            |

### **Boolean Formulas**

- Constant 0 (False) or 1 (True)
- Formula either
  - Constant, or Variable, or
  - Conjunction, Disjunction, or Negation of formulas
- Literal a variable or its negation
- Term conjunction of literals
- Clause disjunction of terms
- *Disjunctive Normal Form* theorem:
  - Every formula can be written as a single clause

# **Truth Tables for Boolean Formulas**

Columns

Input — variables

Output — formula(s)

Intermediate — sub-formulas

#### Rows

1 for every possible combination of input values (in ascending order of input values)

Cells — constants (0 or 1) Use *not*, *and*, or *or* table on cell(s) in same row For Boolean identities — add *equality* operator  $formula_1 = formula_2$ 

# **Truth Tables for Boolean Identities**

| Columns                     | Α | В | A = B |
|-----------------------------|---|---|-------|
| Input — variables           | 0 | 0 | 1     |
| Output — formula(s)         | 0 | 1 | 0     |
| Intermediate — sub-formulas |   | 0 | 0     |
|                             | 1 | 1 | 1     |

#### Rows

1 for every possible combination of input values (in ascending order of input values)

Cells — constants (0 or 1) Use *not*, *and*, or *or* table on cell(s) in same row For Boolean identities — add *equality* operator  $formula_1 = formula_2$ 

## Proof by Truth Table

$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$

| X | Y | Ζ | Y + Z | X • (Y + Z) | = | $(X \bullet Y) + (X \bullet Z)$ | X • Y | X • Z |
|---|---|---|-------|-------------|---|---------------------------------|-------|-------|
| 0 | 0 | 0 | 0     | 0           | 1 | 0                               | 0     | 0     |
| 0 | 0 | 1 | 1     | 0           | 1 | 0                               | 0     | 0     |
| 0 | 1 | 0 | 1     | 0           | 1 | 0                               | 0     | 0     |
| 0 | 1 | 1 | 1     | 0           | 1 | 0                               | 0     | 0     |
| 1 | 0 | 0 | 0     | 0           | 1 | 0                               | 0     | 0     |
| 1 | 0 | 1 | 1     | 1           | 1 | 1                               | 0     | 1     |
| 1 | 1 | 0 | 1     | 1           | 1 | 1                               | 1     | 0     |
| 1 | 1 | 1 | 1     | 1           | 1 | 1                               | 1     | 1     |

## Proof by Truth Table

$$X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$$

| X | Y | Ζ | Y + Z | X • (Y + Z) | $(X \bullet Y) + (X \bullet Z)$ | X • Y | X • Z |
|---|---|---|-------|-------------|---------------------------------|-------|-------|
| 0 | 0 | 0 | 0     | 0           | 0                               | 0     | 0     |
| 0 | 0 | 1 | 1     | 0           | 0                               | 0     | 0     |
| 0 | 1 | 0 | 1     | 0           | 0                               | 0     | 0     |
| 0 | 1 | 1 | 1     | 0           | 0                               | 0     | 0     |
| 1 | 0 | 0 | 0     | 0           | 0                               | 0     | 0     |
| 1 | 0 | 1 | 1     | 1           | 1                               | 0     | 1     |
| 1 | 1 | 0 | 1     | 1           | 1                               | 1     | 0     |
| 1 | 1 | 1 | 1     | 1           | 1                               | 1     | 1     |

#### **Some Boolean Identities**

 $\overline{\mathbf{X}} = \mathbf{X}$  $X \bullet (Y \bullet Z) = (X \bullet Y) \bullet Z$ X + (Y + Z) = (X + Y) + ZX + 0 = X $X \bullet 1 = X$  $X \bullet \overline{X} = 0$  $X + \overline{X} = 1$  $X \bullet Y = Y \bullet X$ X + Y = Y + X $X \bullet X = X$ X + X = X $X \bullet 0 = 0$ X + 1 = 1 $(X \bullet Y) \bullet X = X \bullet Y$ (X + Y) + X = X + Y $X \bullet (Y + Z) = (X \bullet Y) + (X \bullet Z)$  $X + (Y \bullet Z) = (X + Y) \bullet (X + Z)$  $\overline{X \bullet Y} = \overline{X} + \overline{Y}$  $\overline{X + Y} = \overline{X} \bullet \overline{Y}$ 

### Proof by Truth Table

$$(X \bullet \overline{Y}) + (Y \bullet \overline{X}) = (X + Y) \bullet (\overline{X} + \overline{Y})$$

| x | у | x | ӯ | x∙y | y∙x | (x∙y)+(y•x) | (x+y)●(y+x) | x+y | y+x |
|---|---|---|---|-----|-----|-------------|-------------|-----|-----|
| 0 | 0 | 1 | 1 | 0   | 0   | 0           | 0           | 0   | 1   |
| 0 | 1 | 1 | 0 | 0   | 1   | 1           | 1           | 1   | 1   |
| 1 | 0 | 0 | 1 | 1   | 0   | 1           | 1           | 1   | 1   |
| 1 | 1 | 0 | 0 | 0   | 0   | 0           | 0           | 1   | 0   |

# Two Way Multiplexer Design



#### Informal semantics:

$$X = A - if S = 0$$
  
 $X = B - if S = 1$ 

## Two Way Multiplexer Truth Table

| S | Α | В | Χ |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |



| A and not | Β,             | or       |
|-----------|----------------|----------|
| A and     | Β,             | or       |
| A and     | Β,             | or       |
| A and     | В              |          |
|           | A and<br>A and | A and B, |

 $X = \overline{SAB} + \overline{SAB} + S\overline{AB} + S\overline{AB} + S\overline{AB}$  $= \overline{SA} + S\overline{B}$ 

# Truth Table $\rightarrow$ Boolean Formula

Ignore table rows where output is 0

For each remaining row

Construct a term that is true only for that row

For each input variable v include a literal that is

- v if the input for v in that row is 1
- $\overline{\mathbf{v}}$  if the input for  $\mathbf{v}$  in that row is 0

The formula is the disjunction of these row terms

Note: formula is in disjunctive normal form

(full DNF — each term has literal for each variable)

Proves the disjunctive normal form theorem Arbitrary formula ~> truth table ~> DNF formula

#### Boolean Formula → CombinationalCircuit

Input wire for each variable

For each sub-formula

Replace operand with wire (output from its sub-circuit)

Replace operator with gate with output wire



### Two Way Multiplexer Circuit



 $X = \overline{S}A + SB$ 

#### **Boolean Operators & Gates**

| not A    | ~ A                                | Ā                                  | A ->>- |
|----------|------------------------------------|------------------------------------|--------|
| A and B  | A & B                              | <b>A • B</b>                       |        |
| A or B   | <b>A   B</b>                       | <b>A + B</b>                       |        |
| A xor B  | <b>A ^ B</b>                       | A≠B                                |        |
| A nand B | A ↑ B                              | A ↑ B                              |        |
| A nor B  | $\mathbf{A} \downarrow \mathbf{B}$ | $\mathbf{A} \downarrow \mathbf{B}$ |        |
| A xnor B | <b>A = B</b>                       | <b>A = B</b>                       |        |