CMP 338: Fourth Class

HW 3 solution
Integrate circuit manufacture and cost
Boolean Algebra and Truth Tables
"Black Box" circuit design
Performance metrics
Performance and execution time
Relative performance
The CPU Time equation
The TINY instruction set architecture
For next class:
begin HW 4; review 1.6, 1.10; read A.1-2, 2.1-3

HW 3 part 1: Base Conversion

Convert the following to the indicated base:

$$
\begin{aligned}
& 10110111011110_{2}=2 \mathrm{DEE}_{16} \\
& 4 \mathrm{C} 1 \mathrm{~F} 91_{16}=010011000001111110010001_{2} \\
& 100_{10}=64+32+4=2^{6}+2^{5}+2^{2}=01100100_{2} \\
& 10001010_{2}=2^{7}+2^{3}+2^{1}=128+8+2=138_{10} \\
& 1 \mathrm{~F} 3_{16}=1 \cdot 16^{2}+15 \cdot 16^{1}+3 \cdot 16^{0}=256+240+3=499_{10} \\
& 1055_{10}=1024+16+8+4+2+1=10000011111_{2}=41 F_{16}
\end{aligned}
$$

Chip Fabrication

Intel Core I7 Wafer

Integrated Circuit Fabriction Costs

$$
\begin{aligned}
\text { Cost per die } & =\frac{\text { Cost per wafer }}{\text { Dies per wafer } X \text { yield }} \\
\text { Dies per wafer } & =\frac{\text { Wafer area }}{\text { Die area }} \\
\text { Yield } & =\frac{1}{\left(1+(\text { Defects per area } \times \text { Die area } / 2)^{2}\right.}
\end{aligned}
$$

11.8 inch (300mm) patterned wafer
~ 325 (20.7 x 10.5 mm) dies per wafer
$\sim 23 \%$ of dies are defective (yield $=\sim 0.77$)
If a wafer costs \$20,000
what is the fabrication cost of a die (chip)?

HW 3 part 2: Fabrication Cost

A processor fabrication plant gets 400 processor chips to a wafer with a yield of 80%. If the chip fabrication cost is $\$ 90$, what is the cost of the wafer?

$$
\begin{aligned}
\text { chip }_{\text {cost }} & =\frac{\text { water cost }}{\text { chipsPerWafer } \cdot \text { yield }} \\
\text { wafer }_{\text {cost }} & =\text { chip }_{\text {cost }} \cdot \text { chipsPerWafer } \cdot \text { yield } \\
& =\$ 90 \cdot 400 \cdot 0.8=\$ 28,800
\end{aligned}
$$

Computer Design Big Picture

A computer is one big sequential circuit Abstract into discrete sequential components

Combinational circuits + memory + clock
Combinational circuit design

1. Specify semantics

Black Box input and output
Truth Table (Input determines output)
2. Truth table \rightarrow Boolean formula
3. Minimize boolean formula (Karnaugh Maps)
4. Boolean formula \rightarrow combinational circuit

Boolean Algebra

Constants: 0 and 1 (False, True)
Operators: $\underline{n o t}(-, \sim)$, and $(\bullet, \&)$, or $(+, \mid)$

$$
\begin{array}{cccccc}
\mathbf{A} & \overline{\mathbf{A}} & \mathbf{A} & \mathbf{B} & \mathbf{A}+\mathbf{B} & \mathbf{A} \bullet \mathbf{B} \\
0 & \mathbf{1} & 0 & 0 & \mathbf{0} & \mathbf{0} \\
1 & \mathbf{0} & 0 & 1 & \mathbf{1} & \mathbf{0} \\
& & 1 & 0 & \mathbf{1} & \mathbf{0} \\
& & 1 & 1 & \mathbf{1} & \mathbf{1}
\end{array}
$$

Boolean Formulas

Constant - 0 (False) or 1 (True)
Formula - either
Constant, or Variable, or
Conjunction, Disjunction, or Negation of formulas
Literal - a variable or its negation
Term - conjunction of literals
Clause - disjunction of terms
Disjunctive Normal Form theorem:
Every formula can be written as a single clause

Truth Tables for Boolean Formulas

Columns
Input - variables
Output - formula(s)
Intermediate - sub-formulas
Rows
1 for every possible combination of input values (in ascending order of input values)
Cells - constants (0 or 1)
Use not, and, or or table on cell(s) in same row
For Boolean identities - add equality operator

$$
\text { formula }_{1}=\text { formula }_{2}
$$

Truth Tables for Boolean Identities

Columns
Input - variables
Output - formula(s)
Intermediate - sub-formulas

AB $A=B$
001
010
100
111

Rows
1 for every possible combination of input values (in ascending order of input values)

Cells - constants (0 or 1)
Use not, and, or or table on cell(s) in same row
For Boolean identities - add equality operator

$$
\text { formula }_{1}=\text { formula }_{2}
$$

Proof by Truth Table

$\mathrm{X} \bullet(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \bullet \mathrm{Y})+(\mathrm{X} \bullet \mathrm{Z})$

\mathbf{X}	$\mathbf{Y} \mathbf{Z}$	$\mathbf{Y}+\mathbf{Z}$	$\mathbf{X} \bullet(\mathbf{Y}+\mathbf{Z})$	\mathbf{Z}	$\mathbf{X} \bullet \mathbf{Y})+(\mathbf{X} \bullet \mathbf{Z})$	$\mathbf{X} \bullet \mathbf{Y}$	$\mathbf{X} \bullet \mathbf{Z}$	
0	0	0	0	0	$\mathbf{1}$	0	0	0
0	0	1	1	0	$\mathbf{1}$	0	0	0
0	1	0	1	0	$\mathbf{1}$	0	0	0
0	1	1	1	0	$\mathbf{1}$	0	0	0
1	0	0	0	0	$\mathbf{1}$	0	0	0
1	0	1	1	1	$\mathbf{1}$	1	0	1
1	1	0	1	1	$\mathbf{1}$	1	1	0
1	1	1	1	1	$\mathbf{1}$	1	1	1

Proof by Truth Table

$\mathrm{X} \bullet(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \bullet \mathrm{Y})+(\mathrm{X} \bullet \mathrm{Z})$
$X Y Z Y+Z X \bullet(Y+Z)(X \bullet Y)+(X \bullet Z) X \bullet Y ~ X \bullet Z$

0	0	0	0	$\mathbf{0}$	$\mathbf{0}$	0	0
0	0	1	1	$\mathbf{0}$	$\mathbf{0}$	0	0
0	1	0	1	$\mathbf{0}$	$\mathbf{0}$	0	0
0	1	1	1	$\mathbf{0}$	$\mathbf{0}$	0	0
1	0	0	0	$\mathbf{0}$	$\mathbf{0}$	0	0
1	0	1	1	$\mathbf{1}$	$\mathbf{1}$	0	1
1	1	0	1	$\mathbf{1}$	$\mathbf{1}$	1	0
1	1	1	1	$\mathbf{1}$	$\mathbf{1}$	1	1

Some Boolean Identities

$$
\overline{\mathrm{X}}=\mathrm{x}
$$

$$
\begin{array}{ll}
X \bullet(Y \bullet Z)=(X \bullet Y) \bullet Z & X+(Y+Z)=(X+Y)+Z \\
X \bullet 1=X & X+0=X \\
X \bullet \bar{X}=0 & X+\bar{X}=1 \\
X \bullet Y=Y \bullet X & X+Y=Y+X \\
X \bullet X=X & X+X=X \\
X \bullet 0=0 & X+1=1 \\
(X \bullet Y) \bullet X=X \bullet Y & (X+Y)+X=X+Y \\
X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z) & X+(Y \bullet Z)=(X+Y) \bullet(X+Z) \\
\overline{X \bullet Y}=\bar{X}+\bar{Y} & \overline{X+Y}=\bar{X} \bullet \bar{Y}
\end{array}
$$

Proof by Truth Table

$$
(X \bullet \bar{Y})+(Y \bullet \bar{X})=(X+Y) \bullet(\bar{X}+\bar{Y})
$$

$\begin{array}{lllllll}x & y & \bar{x} & \bar{y} & x \bullet \bar{y} & y \bullet \bar{x} & (x \bullet \bar{y})+(y \bullet \bar{x})\end{array} \quad(x+y) \bullet(\bar{y}+\bar{x}) \quad x+y \quad \bar{y}+\bar{x}$

0	0	1	1	0	0	$\mathbf{0}$	$\mathbf{0}$	0

Two Way Multiplexer Design

Informal semantics:

$$
\begin{aligned}
& \mathbf{X}=\mathbf{A}-\text { if } \mathbf{S}=0 \\
& \mathbf{X}=\mathbf{B}-\text { if } \mathbf{S}=1
\end{aligned}
$$

Two Way Multiplexer Truth Table

S A B X
$0 \quad 0 \quad 0 \quad 0$
$0 \begin{array}{llll}0 & 0 & 0\end{array}$

$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$
not S and A and not B, or not S and A and B, or S and not A and B, or
S and A and B
$1100 \quad X=\bar{S} A \bar{B}+\bar{S} A B+S \bar{A} B+S A B$
1111
$=\bar{S} A+S B$

Truth Table \rightarrow Boolean Formula

Ignore table rows where output is 0
For each remaining row
Construct a term that is true only for that row
For each input variable v include a literal that is
v - if the input for v in that row is 1
\bar{v} - if the input for v in that row is 0
The formula is the disjunction of these row terms
Note: formula is in disjunctive normal form
(full DNF - each term has literal for each variable)
Proves the disjunctive normal form theorem
Arbitrary formula \sim truth table \sim DNF formula

Boolean Formula \rightarrow CombinationalCircuit

Input wire for each variable
For each sub-formula
Replace operand with wire (output from its sub-circuit) Replace operator with gate with output wire
~ becomes

becomes

Two Way Multiplexer Circuit

Boolean Operators \& Gates

$\operatorname{not} A$
$\sim \mathbf{A}$

A \& B

A|B
$\mathbf{A + B}$
$A \neq B$
$\mathbf{A} \uparrow \mathbf{B}$
$\mathbf{A} \downarrow \mathbf{B}$
$A=B$

$\mathbf{A} \cdot \mathbf{B}$

